Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(1): e0191123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117054

RESUMO

IMPORTANCE: Microbes use protein toxins as important tools to attack neighboring cells, microbial or eukaryotic, and for self-killing when attacked by viruses. These toxins work through different mechanisms to inhibit cell growth or kill cells. Microbes also use antitoxin proteins to neutralize the toxin activities. Here, we developed a comprehensive database called Toxinome of nearly two million toxins and antitoxins that are encoded in 59,475 bacterial genomes. We described the distribution of bacterial toxins and identified that they are depleted by bacteria that live in hot and cold temperatures. We found 5,161 cases in which toxins and antitoxins are densely clustered in bacterial genomes and termed these areas "Toxin Islands." The Toxinome database is a useful resource for anyone interested in toxin biology and evolution, and it can guide the discovery of new toxins.


Assuntos
Antitoxinas , Toxinas Bacterianas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Antitoxinas/metabolismo , Genoma Bacteriano
2.
Nat Commun ; 12(1): 3743, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145238

RESUMO

The extracellular Contractile Injection System (eCIS) is a toxin-delivery particle that evolved from a bacteriophage tail. Four eCISs have previously been shown to mediate interactions between bacteria and their invertebrate hosts. Here, we identify eCIS loci in 1,249 bacterial and archaeal genomes and reveal an enrichment of these loci in environmental microbes and their apparent absence from mammalian pathogens. We show that 13 eCIS-associated toxin genes from diverse microbes can inhibit the growth of bacteria and/or yeast. We identify immunity genes that protect bacteria from self-intoxication, further supporting an antibacterial role for some eCISs. We also identify previously undescribed eCIS core genes, including a conserved eCIS transcriptional regulator. Finally, we present our data through an extensive eCIS repository, termed eCIStem. Our findings support eCIS as a toxin-delivery system that is widespread among environmental prokaryotes and likely mediates antagonistic interactions with eukaryotes and other prokaryotes.


Assuntos
Archaea/genética , Bactérias/genética , Proteínas Contráteis/genética , Sistemas de Translocação de Proteínas/genética , Toxinas Biológicas/metabolismo , Animais , Archaea/metabolismo , Bactérias/metabolismo , Bacteriófagos/metabolismo , Fungos , Nematoides , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico/fisiologia , Toxinas Biológicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...